Point counting on K3 surfaces and applications

Andreas-Stephan Elsenhans

Universität Paderborn

Providence RI October 2015

A variation of a Kedlaya – Harvey method for K3 surfaces of degree 2.

Joint work with J. Jahnel.

Point Counting

A.-S. Elsenhans (Universität Paderborn)

October 2015

Naive point counting

Algorithms Evaluate f at all points of \mathbf{P}^n and count zeroes.

Optimization 1

Compute roots of univariate polynomials $f(x_0, \ldots, x_{n-1}, t)$ for all $(x_0, \ldots, x_{n-1}) \in \mathbf{P}^{n-1}(\mathbb{F}_{p^d})$.

Optimization 2 Count Frobenius orbits of points instead of points.

Complexity $O(p^{nd})$ and $O(p^{(n-1)d})$.

Introduction

Problem

Given a homogeneous polynomial $f \in \mathbb{Z}[X_0, \ldots, X_n]$. Compute

$$\#\{x \in \mathbf{P}^n(\mathbb{F}_{p^d}) \mid f(x) = 0\}$$

for some prime p and several values of d.

Variation Study the double cover

$$W^2 = f(X_0, \ldots, X_n)$$

Point Counting

instead of the variety f = 0.

A.-S. Elsenhans (Universität Paderborn)

October 2015 2 / 33

Optimized naive point counting

Example

$$W^{2} = 6X^{6} + 6X^{5}Y + 2X^{5}Z + 6X^{4}Y^{2} + 5X^{4}Z^{2} + 5X^{3}Y^{3} + X^{2}Y^{4} + 6XY^{5} + 5XZ^{5} + 3Y^{6} + 5Z^{6}$$

Number of points over $\mathbb{F}_7, \ldots, \mathbb{F}_{7^{10}}$:

60, 2488, 118587, 5765828, 282498600, 13841656159, 678225676496, 33232936342644, 1628413665268026, 79792266679604918.

Remark

Equation has no monomial with Y and Z.

Lefschetz Trace Formula

$$\#V(\mathbb{F}_{
ho})=\sum_{i=0}^{2n}(-1)^{i}\mathsf{Tr}(\mathsf{Frob},\mathsf{H}^{i}_{\mathrm{\acute{e}t}}(V,\mathbb{Q}_{\ell}))$$

for a n-dimensional projective variety V with good reduction at p.

Problem

Find explicit description of étale cohomology.

Example

Let E be an elliptic curve.

Then the ℓ^n torsion of *E* give an explicit description of $H^1_{\acute{e}t}(E, \mathbb{Z}/\ell^n\mathbb{Z})$.

Point Counting

Remark

This is the starting point of the Schoof algorithm.

```
A.-S. Elsenhans (Universität Paderborn)
```

October 2015

October 2015

Congruences on the number of points

Lemma

Let V be a cubic surface over \mathbb{F}_p . Then $\#V(\mathbb{F}_p) \equiv 1 \mod p$.

Proof

Let f(X, Y, Z, W) be the corresponding cubic form. $f(x, y, z, w)^{p-1} \mod p$ is 0 or 1 by Fermat's theorem. Thus,

$$(p-1) \# V(\mathbb{F}_p) \equiv p^4 - 1 - \sum_{x,y,z,w=0,...,p-1} f(x,y,z,w)^{p-1} \mod p^{2}$$

Any monomial of $f(x, y, z, w)^{p-1}$ has degree 3(p-1). Thus, one of the exponents is p-1. As $\sum_{x=0,\dots,p-1} x^e \equiv 0 \mod p$ for $e = 0,\dots,p-2$ the sum above is zero. We get

$$(p-1)\#V(\mathbb{F}_p)\equiv -1 \mod p.$$

.-S. Elsenhans (Universität Paderborn)

Point counting on cubic surfaces

27 Lines

A smooth cubic surface has 27 lines. They generate the Picard group. Via the cycle map we get the étale cohomology.

$$\mathsf{Pic}(V)\cong \mathbb{Z}^7,\;\mathsf{H}^2_{\mathrm{\acute{e}t}}(V,\mathbb{Z}_\ell(1))\cong \mathsf{Pic}(V)\otimes_{\mathbb{Z}}\mathbb{Z}_\ell$$

Example

> p := NextPrime(31^31); > p; 17069174130723235958610643029059314756044734489 > rr<x,y,z,w> := PolynomialRing(GF(p),4); > gl := x^3 + 2*y^3 + 3*z^3 + 5*w^3 - 7*(x+y+z+w)^3; > time NumberOfPointsOnCubicSurface(gl); 2913567055049513379297281477203956430954204417435461480 74332970578622743757660955298550825611 Time: 1.180

A.-S. Elsenhans (Universität Paderborn)

October 2015

Generalization

Remark

The approach above can be used to show that any hypersurface S in $\mathbf{P}^n(\mathbb{F}_p)$ of degree at most n satisfies $\#S(\mathbb{F}_{p^f}) \equiv 1 \mod p$.

Point Counting

Resulting Algorithm

To count the number of points on the hypersurface f = 0 in $\mathbf{P}^n(\mathbb{F}_{p^d})$ modulo p, we need all the terms of f^{p-1} having only exponents divisible by p-1.

Variation

To treat $W^2 = f(X_0, ..., X_n)$, we have to inspect the quadratic character. Modulo *p* this is given by the $\frac{p-1}{2}$ -th power.

Point Counting

For the point count modulo p we have to sum $1 + f^{\frac{p-1}{2}}$.

Interpretation

We have a *p*-adic approximation of $\#V(\mathbb{F}_p)$ with precision 1.

8 / 33

Setup $q = p^d$ with p odd, $f \in \mathbb{Z}[X_0, \ldots, X_n]$.

The quadratic character as a power

$$f^{q-1}(x_0,...,x_n) \in \{0,1\} \text{ for } x_0,...,x_n \in \mathbb{F}_q$$

 $f^{\frac{q-1}{2}}(x_0,...,x_n) \in \{0,\pm 1\} \text{ for } x_0,...,x_n \in \mathbb{F}_q$

The quadratic character as a norm

$$N(f^{p-1}(x_0,...,x_n)) = N(f(x_0,...,x_n))^{p-1} \in \{0,1\} \text{ for } x_0,...,x_n \in \mathbb{F}_q$$
$$N(f^{\frac{p-1}{2}}(x_0,...,x_n)) = N(f(x_0,...,x_n))^{\frac{p-1}{2}} \in \{0,\pm1\} \text{ for } x_0,...,x_n \in \mathbb{F}_q$$

Conclusion

We get the numbers of points over extensions without further powering. We just have to take norms.

Point Counting

October 2015

9 / 33

Hasse-Witt Matrix

Polynomials and linear maps

 $g \in \mathcal{K}[X]$, deg $(g) \leq m(p-1)$. $m_g \colon \mathcal{K}[X] \to \mathcal{K}[X]$ multiplication by g.

Special monomials

$$B_0 := \{X^0, X^1, \dots, X^m\}$$
$$B_1 := \{X^0, X^p, \dots, X^{mp}\}$$
$$B_l := \{X^0, X^{p'}, \dots, X^{mp'}\}$$

Let A be the matrix of m_g with domain basis B_0 and co-domain basis B_1 . I.e. we combine m_g with an inclusion and a projection map. (Hasse-Witt Matrix)

Observation

Then Tr(A) is the sum of all coefficients of monomials of g that have degree divisible by (p-1).

Point Counting

Result from cohomology

The number of points is given by the alternating sum of the traces of Frobenius on cohomology.

Can we convert the above formula to the trace of a matrix?

Extending the base field should result in the trace of a power of the matrix.

Point Counting

A.-S. Elsenhans (Universität Paderborn

October 2015

10 / 33

Hasse-Witt Matrix II

Reminder

$$B_l := \{X^0, X^{p^l}, \dots, X^{mp^l}\}$$

Remark

The matrix A represents $m_{g(X^{p^{l-1}})}$ with domain basis B_{l-1} and co-domain basis B_l .

Theorem

The matrix A^{l} represents $m_{g(X^{p^{l-1}})\cdots g(X^{p})g(X)}$ with domain basis B_{0} and co-domain basis B_{l} .

Proof

The projections remove only those terms in $g(X^{p^i}) \cdots g(X^p)g(X)$ that do not contribute to the final result.

Point Counting

Algorithm

Given a variety V: f = 0 or $C: w^2 = f$.

• Compute
$$g := f^{p-1}$$
 or $g := f^{\frac{p-1}{2}}$.

- Use the coefficients to build up the Hasse-Witt matrix A for g.
- Compute trace of the *d*-th power of *A*.
- Derive $\#V(\mathbb{F}_{p^d})$ modulo p.

Summary

We can do the point count with a *p*-adic precision of one digit.

A.-S. Elsenhans (Universität Paderborn)

October 2015

13 / 33

Outline of the point counting algorithm

Goal

Counting solutions of $w^2 = f(x, y, z)$ with $x, y, z \in \mathbb{F}_q^*$, $q = p^d$ and $f \in \mathbb{Z}[X, Y, Z]$:

Point Counting

Algorithm

- $g_k := f^{(2k-1)\frac{p-1}{2}} \in (\mathbb{Z}/p^n\mathbb{Z})[X, Y, Z]$ for k = 1, ..., n.
- Build the Hasse-Witt matrices A_k corresponding to g_k .
- Compute traces of powers of A_k .
- Each trace results in an approximation with *p*-adic precision 1.
- Use the extrapolation method to get *p*-adic precision *n*.

More *p*-adic precision – Using extrapolation

Binomial formula

Let $X = \pm 1 + pE$ with $E \in \mathbb{Z}_p$ be given.

$$X = \pm 1 + pE$$

$$X^{2} = 1 \pm 2pE + p^{2}E^{2}$$

$$X^{3} = \pm 1 + 3pE \pm 3p^{2}E^{2} + p^{3}E^{3}$$

$$X^{4} = 1 \pm 4pE + 6p^{2}E^{2} \pm 4p^{3}E^{3} + p^{4}E^{4}$$

$$X^{5} = \pm 1 + 5pE \pm 10p^{2}E^{2} + 10p^{3}E^{3} \pm 5p^{4}E^{4} + p^{5}E^{5}$$

Linear combinations

E.g.

$$\frac{1}{8}(15X - 10X^3 + 3X^5) = \pm 1 + \frac{5}{2}p^3E^3 \pm 15p^4E^4 + 3p^5E^5$$

Point Counting

gives us ± 1 with a *p*-adic precision 3.

A.-S. Elsenhans (Universität Paderborn)

October 2015 14 / 33

Example

K3-surface

$$V: w^2 = x^6 + y^6 + z^6 + (x + 2y + 3z)^6$$

Count point over \mathbb{F}_{p^d} for p = 23, 29, 31, 37 and $d = 1, \ldots, 10$.

Number of points over $\mathbb{F}_{p^{10}}$: 1716155831334527151964160602, 176994576151110959542233115893, 671790528819083879907512196232, 23122483666661170932546556282656

Benchmark

- Computation of $\#V(\mathbb{F}_q) \mod p^{11}$
- Highest inspected power f_6^{378} of degree 2268 with 2575315 terms
- Matrices up to size 2080×2080
- Time per prime: 2 minutes
- 1.6 GB memory usage

K3 surfaces

A K3 surface is a simply connected algebraic surface with trivial canonical bundle.

Hodge diamond

 $\begin{array}{c}1\\0&0\\1&20&1\\0&0\\1\end{array}$

Example

The double covers $w^2 = f_6(x, y, z)$ are examples of K3 surfaces.

Picard group and Cohomology

For a K3 surface S over \mathbb{C} we have the cycle map $Pic(S) \hookrightarrow H^{1,1}(S, \mathbb{C})$. Thus, Pic(S) is a free \mathbb{Z} module of rank $1, \ldots, 20$.

Point Counting

```
A.-S. Elsenhans (Universität Paderborn)
```

October 2015

17 / 33

The Artin-Tate formula

Notation

- V a K3 surface over \mathbb{F}_q .
- ρ and Δ the rank and the discriminant of Pic(V).
- Φ the characteristic polynomial of Frobenius on H².
- Br(V) the Brauer group. (Order is finite and a square).

$$|\Delta| = \frac{\lim_{T \to q} \frac{\Phi(T)}{(T-q)^{\rho}}}{q^{21-\rho} \# \operatorname{Br}(V)}$$

The Picard group as a Galois module

The Picard group of a K3 surface S (defined over \mathbb{Q}) will be defined over some number field L. Thus, Pic(S) will be a linear representation of Gal(L/\mathbb{Q}). All the eigenvalues of this representation will will be roots of unity.

The étale situation

Galois subrepresentation $\operatorname{Pic}(S_{\overline{\mathbb{F}}_{\rho}}) \hookrightarrow \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_{\rho}}, \mathbb{Q}_{l}(1)).$

Interpretation

The number of Frobenius eigenvalues on $H^2_{\text{ét}}(S_{\overline{\mathbb{F}}_{\rho}}, \mathbb{Q}_l(1))$ that are roots of unity is an upper bound for the Picard rank of $S_{\overline{\mathbb{F}}_{\rho}}$.

Remark

By the Tate conjecture this bound is sharp. (Proved for K3 surfaces by Swinnerton-Dyer, Nygaard, Pera, Charles)

Point Counting

-S. Elsenhans (Universität Paderbo

October 2015

18 / 33

The Picard rank algorithm

Input:

A K3 surface S defined over \mathbb{Q} .

Algorithm: (Upper bound of geometric Picard rank)

- For some primes of good reduction of *S* compute the characteristic polynomial of the Frobenius on étale cohomology by point counting.
- Count the roots of the form $p\zeta_n$ for each polynomial.
- The minimum *m* is a rank bound.
- If the minimum is reached multiple times use the Artin Tate formula to compute the square classes of the discriminants of the Picard groups of the reductions.
- In case several square classes show up, m-1 is a rank bound.

Remark

This algorithm was introduced by van Luijk and Kloosterman.

Oct

Determinantal quartics

A generic quartic of the form

$$0 = \det \begin{pmatrix} 0 & l_1 & l_2 & l_3 \\ l_1 & 0 & l_4 & l_5 \\ l_2 & l_4 & 0 & l_6 \\ l_3 & l_5 & l_6 & 0 \end{pmatrix}$$

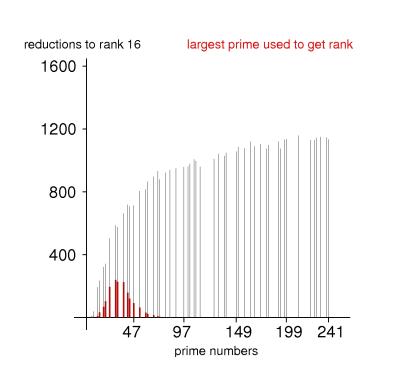
has 14 singularities of type A_1 . For random linear forms l_1, \ldots, l_6 we expect the Picard rank to be 15.

Degree 2 models

nhans (Universität Paderborn

Let P be a singular point of a quartic surface S in \mathbb{P}^3 . A line through P will intersect S in two other points. This will result in degree 2 model of S blown up at P.

Point Counting



Point Counting

Test

Choose at random 1600 determinantal quartics and all primes below 250. Run the Picard rank bound algorithm in all cases.

Expectation

Most of the surfaces have Picard rank 15.

Result

- 1503 surfaces have rank 15.
- 93 surfaces have rank 16.
- 3 surfaces have rank 17.
- 1 surface has rank 18.

We have additional lines and conics on the 97 surfaces with rank > 15.

A.-S. Elsenhans (Universität Paderborn) Point Counting

October 2015 22 / 33

Testing the Picard rank algorithm III

Sample

200 sextic curves with coefficients $\{0, \pm 1\}$. 171 of them turned out to be smooth. We inspect only thouse.

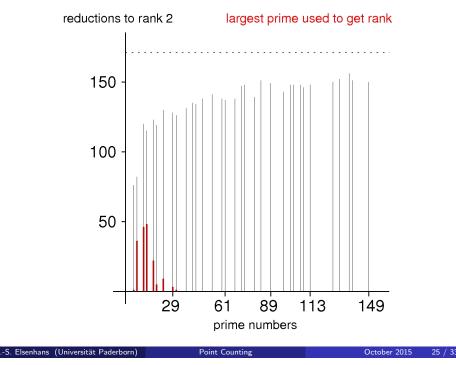
Result

- Two of them have a splitting line resulting in Picard rank 2.
- All the others have Picard rank 1.

October 2015

21 / 33

23 / 33



(Non-)ordinary primes of elliptic curves

Setup

Let E be an elliptic curve over \mathbb{Q} .

Recall

A prime p is called ordinary if $\#E(\mathbb{F}_p) \not\equiv 1 \mod p$.

Theorem

In case *E* has complex multiplication, ordinary primes have density $\frac{1}{2}$. All the inert primes of the CM-field are non-ordinary.

Theorem (Serre)

In case E does not have complex multiplication, ordinary primes have density 1.

Ordinary and non ordinary-primes

Definition

The reduction modulo p of a variety V is called ordinary, iff

 $\#V(\mathbb{F}_p) \not\equiv 1 \mod p$.

Observation

To detect ordinary primes we need the point count with p-adic precision 1.

Test

We have to compute the coefficient of $(XYZ)^{p-1}$ modulo p in $f_6^{\frac{p-1}{2}}$.

Remark

This can be done without computing all the coefficients of the power by using the linear relations between the coefficients of f^n and f^{n+1} .

-S. Elsenhans (Universität Paderborn)

Point Counting

October 2015 26 / 33

Non-ordinary primes: Example

Sample

The 1600 singular quartics from above.

Compute

Non-ordinary primes up to 1000. Takes 6 seconds for each surface.

Result

- The surfaces have 0 to 7 non-ordinary primes.
- 154 out of 167 primes occur as non-ordinary at least once.

Point Counting

ldea

Search for examples with many non-ordinary primes.

Example 1

Equation

$$S: w^{2} = xyz(7x^{3} - 7x^{2}y + 49x^{2}z - 21xyz + 98xz^{2} + y^{3} - 7y^{2}z + 49z^{3})$$

Properties

- The cubic is the norm of a linear form.
- We have 15 singularities of type A_1 .
- Surface has geometric Picard rank 16.
- Not Kummer.
- Bad primes: 2,7

Conjecture

Surface has complex multiplication with

$$\mathcal{K} = \mathbb{Q}(i, \zeta_7 + \zeta_7^{-1}) = \mathbb{Q}(\zeta_{28} + \zeta_{28}^{13}) = \mathbb{Q}[X]/(X^6 + 5X^4 + 6X^2 + 1).$$

Observation

The L-series of S is similar to a Hecke L-series attached to K. A.-S. Elsenhans (Universität Paderborn) Point Counting October 2015

Numerical evidence – primes up to 997

Common properties of both examples:

non-ordinary primes

 $\#S(\mathbb{F}_p) \equiv 1 \mod p \iff$ inertia degree of p in K is bigger than one.

Picard rank of reduction

- Reduction has Picard rank 16 or 22.
- Rank 22 \Leftrightarrow inertia degree of p in K is even \Leftrightarrow $p \equiv 3 \mod 4$.

Frobenius eigenvalues at ordinary prime

- p ordinary \Rightarrow Frobenius eigenvalues are in K.
- Let (\mathfrak{p}) be a prime in K above p.
- One of $\pm p_{n}^{p}$ is a Frobenius eigenvalue.

October 2015 31 / 33

29 / 33

Example 2

Equation

5:
$$w^2 = xyz(x^3 + 6x^2z - 3xy^2 - 3xyz + 9xz^2 + y^3 - 3yz^2 + z^3)$$

Properties

- The cubic is the norm of a linear form.
- We have 15 singularities of type A_1 .
- Surface has geometric Picard rank 16.
- Not Kummer.
- Bad primes: 2, 3

Conjecture

Surface has complex multiplication with

$$K = \mathbb{Q}(i, \zeta_9 + \zeta_9^{-1}) = \mathbb{Q}(\zeta_{36} + \zeta_{36}^{17}) = \mathbb{Q}[X]/(X^6 + 6X^4 + 9X^2 + 1).$$

Observation

The L-series of S is similar to a Hecke L-series attached to K. Point Counting

A.-S. Elsenhans (Universität Paderborn)

October 2015 30 / 33

Determination of sign

Example 1

- S: $w^2 = xyz(7x^3 7x^2y + 49x^2z 21xyz + 98xz^2 + y^3 7y^2z + 49z^3)$
- \mathfrak{p}_2 and \mathfrak{p}_7 primes in $K = \mathbb{Q}(\zeta_{28} + \zeta_{28}^{13})$ above 2 and 7.

$$\mathcal{G} := \left(\{ x \in \mathcal{O}/(2\mathfrak{p}_2\mathfrak{p}_7) \mid x \equiv 1 \bmod 2, x \notin \mathfrak{p}_7 \}, \cdot \right).$$

- Let p be an ordinary prime of S and (p) a prime of K above p.
- All Frobenis eigenvalues at p are of the form $\pm p \frac{p}{n}$.
- The sign is determined by a coset of a subgroup of G.

Example 2

- $S: w^2 = xvz(x^3 + 6x^2z 3xv^2 3xvz + 9xz^2 + v^3 3vz^2 + z^3)$
- $K = \mathbb{Q}(\zeta_{36} + \zeta_{36}^{17})$
- $G := (\{x \in \mathcal{O}/(2\mathfrak{p}_2) \mid x \equiv 1 \mod 2\}, \cdot) = (\mathbb{Z}/2\mathbb{Z}, +)^3$
- The signs of the Frobenius eigenvalues at ordinary primes are given by an index 2 subgroup of G.

Point Counting

Summary

Point Counting

 $p\mbox{-}adic$ approach results in a practical point counting algorithm for K3 surfaces of degree 2.

Picard group computation

We can compute Picard ranks of random examples.

Special examples

We found examples of real or complex multiplication by $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{13}), \mathbb{Q}(\zeta_{28} + \zeta_{28}^{13}), \mathbb{Q}(\zeta_{36} + \zeta_{36}^{17}).$

Observation

All examples of K3 surfaces with real multiplication found have the property:

Endomorphism field \subset Field of definition of Picard group

Point Counting

A.-S. Elsenhans (Universität Paderborn)

October 2015 33 / 33